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Abstract

Subjective cognitive decline (SCD) is the preclinical stage of Alzheimer’s disease (AD) which 

happens even earlier than mild cognitive impairment (MCI). Progressive SCD will convert to 

MCI with the potential of further evolving to AD. Therefore, early identification of progressive 

SCD with neuroimaging techniques (e.g., structural MRI) is of great clinical value for early 

intervention of AD. However, existing MRI-based machine/deep learning methods usually suffer 

the small-sample-size problem and lack interpretability. To this end, we propose an interpretable 

autoencoder model with domain transfer learning (IADT) for progression prediction of SCD. 

Firstly, the proposed model can leverage MRIs from both the target domain (i.e., SCD) and 

auxiliary domains (e.g., AD and NC) for progressive SCD identification. Besides, it can 

automatically locate the disease-related brain regions of interest (defined in brain atlases) through 

an attention mechanism, which shows good interpretability. In addition, the IADT model is 

straightforward to train and test with only 5~10 seconds on CPUs and is suitable for medical tasks 

with small datasets. Extensive experiments on the publicly available ADNI dataset and a private 

CLAS dataset have demonstrated the effectiveness of the proposed method.
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I. Introduction

AS one of the main causes of dementia and death, Alzheimer’s disease (AD) has affected 

millions of older people around the world [1]. As illustrated in Fig. 1, AD is characterized 

as a chronic neurodegenerative process with an extended spectrum. Its prodromal stage 

is mild cognitive impairment (MCI), while an even earlier preclinical stage is termed 

as subjective cognitive decline (SCD) or subjective memory complaint (SMC) [2], [3]. 

Growing evidence has verified that individuals with SCD may suffer higher risks of evolving 

to AD. Thus progression prediction of SCD is of great clinical value for early intervention 

of the brain disease progress. Neuroimaging has been shown as an effective technology for 

understanding the mechanisms of different brain disorders and has already been adopted for 

the progression prediction of SCD [4], [5].

Structural magnetic resonance imaging (sMRI) is a widely used imaging modality for 

AD-spectrum research [6], [7]. As the preclinical stage of AD, it typically takes several 

years for a progressive SCD (pSCD) subject to evolve to MCI, which makes the data 

collection a time-consuming and challenging task. Although several previous studies have 

applied machine learning to MRI-based SCD progression prediction [8]–[11], they usually 

suffer from the small-sample-size problem. Compared with small-sized SCD samples, there 

are much more AD and normal control (NC) samples, such as those in the public ADNI 

database [6]. Thus, it is interesting to employ these relatively large-scale AD and NC 

samples to assist the task of SCD progression prediction. From a clinical point of view, 

as shown in Fig. 1, AD typically goes through the following stages (extended spectrum): 

NC→stable SCD (sSCD)→ progressive SCD (pSCD)→stable MCI (sMCI)→progressive 

MCI (pMCI)→AD. Across the full spectrum of AD, sSCD is close to NC while pSCD is 

close to AD, thus the model trained on AD and NC samples could be helpful to assist the 

task of pSCD vs. sSCD classification. Several studies [12]–[14] have revealed that machine/

deep learning models trained on AD and NC samples can achieve good results when applied 

directly to the task of pMCI vs. sMCI classification. In this work, we propose to leverage 

AD and NC samples for the training for pSCD vs. sSCD classification. In addition, we are 

interested in finding important brain regions-of-interest (ROIs) that are associated with SCD 

progression, thus helping enhance the interpretability of learning-based diagnostic systems.

Based on these motivations, we propose an interpretable autoencoder model with domain 

transfer learning (IADT) with application to SCD progression prediction. As illustrated in 

Fig. 2, the IADT model includes four key components: (1) a feature encoder that learns the 

shared subspace representations of different domains, (2) an attention component that helps 

detect disease-related brain regions of interest, (3) a decoding module that reconstructs the 

original input, (4) a classification module that is responsible for the identification of brain 

disorders. During training, the labeled AD/NC samples are used to train the classification 
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module, while unlabeled SCD samples are used to train the reconstruction module. A 

domain adaptation loss is utilized to enforce the distribution of source domain (AD and NC) 

and target domain (pSCD and sSCD) to get close. Through training with these losses, the 

network can learn some features that are both discriminative to brain disorders and reflect 

the properties of SCD, thus can be applied to pSCD vs. sSCD classification.

The contributions of this work are listed as follows:

• This paper proposes an interpretable autoencoder model with attention 

mechanism which can automatically locate the important brain regions that are 

related to subjective cognitive decline. This helps enhance the interpretability 

of MRI biomarkers learned by deep learning to improve their utility in clinical 

practice.

• The proposed network structure can leverage MRIs from both the target domain 

(i.e., SCD) and auxiliary source domains (e.g., AD and NC) for SCD progression 

prediction to increase their utility in clinical practice and improve clinical 

diagnosis.

• To evaluate the effectiveness of the proposed IADT model, we conduct 

experiments on the ADNI and CLAS datasets. Our method achieves state-of-the-

art results on SCD progression prediction with good interpretability.

The rest part of this paper is structured as follows. Related studies are first reviewed 

in Section II. The materials used in this work are introduced in Section III. Section 

IV introduces the proposed method in detail. Section V presents experimental settings, 

evaluation metrics, competing methods, and experimental results. The brain ROIs 

highlighted by the model and the influence of several key parameters are analyzed in Section 

VI. The paper is finally concluded in Section VII.

II. Related Works

A. Learning-based SCD Progression Prediction

As the preclinical stage of AD, SCD has attracted growing awareness in the field 

of brain disease analysis. Existing studies on SCD can be roughly divided into non-

neuroimaging-based methods and neuroimaging-based methods. Engedal et al. [15] explore 

electroencephalography (EEG) with a statistical method to predict SCD conversion. Engedal 

et al. [16] use demographic information through machine learning to predict the progression 

of SCD. Since structural MRIs have been widely used in brain disorder identification, 

numerous machine learning methods have been proposed to deal with AD-related brain 

disorder classification [17], [18]. Yue et al. [8] utilize cost-sensitive support vector machine 

(CSVM) for SCD progression prediction based on clinical and MRI features. Felpete et 
al. [9] use SVM and random forest for the prediction of SCD conversion. Lin et al. 
[10] introduce sparse coding for MRI feature selection and use random forest for SCD 

progression prediction. Liu et al. [11] propose a GAN-based framework to synthesize PET 

and MRI data of SCD which can increase the training data and assist SCD progression 

prediction. Despite the progress, identifying progressive SCD (pSCD) and stable SCD 

(sSCD) individuals is still a challenging task due to the small-sample-size problem and 
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insignificant pathological brain changes. Since SCD is a preclinical stage of AD, how 

to leverage the knowledge from AD/NC classification (with a relatively large amount of 

labeled samples, and significant pathological brain changes) to SCD progression prediction 

is an open problem with clinical value.

B. Domain Adaptation for AD-related Disease Identification

Transfer learning [19]–[21] and domain adaptation [22], [23] have been used to tackle 

problems when the target domain has relatively fewer data and different distribution from 

the source domain. These methods do not require identical distribution of training/source 

data and test/target data and can share knowledge between different domains. Some studies 

use transfer learning for early diagnosis of AD. Cheng et al. [24] propose a transferable 

support vector machine with cross-domain kernel learning for MCI conversion prediction. 

With the recent progress of deep learning (DL), some methods leverage deep neural 

networks through fine-tuning to facilitate transfer learning for AD analysis [25]. Lian et 
al. [14] reveal that training a deep network with AD and NC samples is beneficial for 

MCI conversion prediction. These transfer learning methods indicate that AD has inherent 

relationship with its early stages (e.g., MCI), thus we explore leveraging knowledge learned 

from AD and NC for predicting SCD progression.

III. Materials

A. Data Acquisition

We employ T1-weighted structural MRIs from two datasets in this work for model training 

and test. The first one is the publicly available brain MRI dataset, i.e., Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) [6]1. We use 3T T1-weighted structural MRIs of 159 AD 

patients and 201 normal controls (NC) from the ADNI dataset in this work.

The second dataset is the Chinese Longitudinal Aging Study (CLAS) dataset [26]. This 

dataset includes 76 SCD subjects with 3T T1-weighted structural MRIs. There are 24 

progressive SCD (pSCD) and 52 stable SCD (sSCD) subjects. These pSCD subjects 

have evolved to MCI within the next 84 months, while the sSCD ones remain stable. 

The demographic information for these two datasets is shown in Table I. To analyze the 

statistical difference, we use hypothesis testing at the 5% significance level, while the null 

hypothesis is “there is no significant difference”. Specifically, we adopt paired t-test to 

evaluate the difference between these two groups (i.e., pSCD and sSCD) in terms of age. 

The p-value is 0.1177, which accepts the null hypothesis at the 5% significance level. This 

indicates that statistically the ages of these two cohorts, i.e., pSCD and sSCD, have no 

significant difference.

We also analyze the relationship between the classification output and the age, cognition 

scores (MMSE scores). Specifically, the age and MMSE are set as the input variables, and 

classification result (pSCD: 1, sSCD: 0) is the response output. We adopt logistic regression 

to fit the relationship between the input (age, MMSE) and output (pSCD or sSCD). We got 

1 https://ida.loni.usc.edu 
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the p-values: 0.2405 and 0.1578 for the age and MMSE, respectively, which indicates that 

the coefficients for age and MMSE are not significant for pSCD/sSCD.

B. Image Preprocessing and MRI Feature Extraction

All the T1-weighted MRIs are preprocessed through a standard pipeline, including 1) 

skull stripping, 2) intensity inhomogeneity correction, 3) registration to the Automated 

Anatomical Labeling (AAL) template [27], and 4) re-sampling to the resolution of 1×1×1 

mm3. We use Freesurfer2 to facilitate skull stripping and adopt the SPM software package3 

to conduct the other MRI preprocessing steps. All the processed MRIs have the identical 

dimension of 181 × 217 × 181.

For statistical analysis and model training, we extract ROI features from MRIs based on 

AAL. The AAL atlas is an anatomical parcellation of the spatially normalized T1 volume 

which has labeled 90 brain regions of interest. During computation, the AAL atlas is 

used as a mask. The features of a brain MRI are then calculated as the volumes of gray 

matter in each of the 90 brain regions. The dimension of the ROI feature is 90, and each 

dimension reflects the gray matter volume in the corresponding brain region. The advantage 

of ROI features is that they contain prior knowledge from neuroscientists and have good 

interpretability for indicating which brain areas are more closely related to the disease 

classification.

IV. Methodology

A. Problem Formulation

We leverage domain adaptation for SCD progression prediction. Suppose the joint feature 

space of samples and the corresponding labels are represented as  × . We define a 

source domain S and a target domain T on the feature space, but they have different 

distributions. A total of ns samples with category labels are provided in the source domain, 

i.e., DS = xi
S, yi

S
i = 1

ns , while a number of nt samples are given the target domain i.e., 

DT = xj
T

j = 1
nt . The same set of category labels is shared by the source and target domains. 

In our work, AD and NC samples are set as the source domain (AD: 1, NC: 0), while pSCD 

and sSCD samples are the target domain (pSCD: 1, sSCD: 0). The goal is to train a model 

with labeled source domain samples and unlabeled/labeled target domain samples so the 

learned model can generalize well to target data for label estimation.

B. Interpretable Autoencoder with Domain Transfer

As illustrated in Figure 2, the proposed interpretable autoencoder with domain transfer 

(IADT) framework consists of 4 modules. (1) The attention component automatically 

detects the most discriminative brain MRI features (ROIs) of the input data. (2) The 

encoder projects the input data from the original feature space to a latent compressed 

feature space. (3) The decoder reconstructs the input data from the intermediate compressed 

representations to its original feature space. (4) The classifier predicts the category labels. 

2 https://surfer.nmr.mgh.harvard.edu/ 
3 https://www.fil.ion.ucl.ac.uk/spm/ 
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In the training phase, the source data and target data first go through the attention module 

for “feature filtering”. Then the data are fed into the encoder module and projected into 

a low-dimensional latent feature space. A maximum mean discrepancy (MMD) loss is 

facilitated on these compressed representations of source and target data to reduce their 

domain difference. With the compressed representations, a classifier is trained with the 

category labels (source domain) to enforce the projected latent features more discriminative 

to brain disorders. Meanwhile, a decoder is trained using reconstruction loss to enforce the 

projected latent features containing the most useful information within the target data. In the 

test stage, the trained classifier is directly applied to the target domain (SCD) for prediction 

(i.e., pSCD vs. sSCD classification).

C. Attention Mechanism for Brain ROI Selection

Brain disorders have a close relationship with specific brain areas [28]–[31]. Since we 

use brain ROI feature as input, we aim to identify which regions are more disease-related 

automatically to enhance interpretability of MRI biomarkers. As illustrated in Fig. 3, the 

90-dimensional ROI feature is used as the network input, denoted as I = (R1, R2, ⋯, 
Rn). The feature is fed into an attention network that consists 90 neurons. The softmax is 

used as the activation function to output a probability (weight) on each dimension of the 

90-dimension feature with a summation of 1, i.e., w = [w1, w2, ⋯, wn], ∑i = 1
n wi = 1. These 

weights are then multiplied with the original input ROI feature to get weighted features. 

From the output probabilities of the attention module, we can analyze the importance of 

different brain regions.

D. Feature Encoding and Adaptation

After feature importance weighting by the attention module, data from the source and 

target domains are fed into the feature encoder. The feature encoder projects the data 

into a low-dimensional latent space. To achieve this, we design a three-layer multiple-layer-

perception (MLP) with 90, 64, 32 neurons, respectively. After encoding, all the data have 

been projected to the 32-dimensional space. The encoders for the source and target domains 

share the same weights. To align the feature distributions of source and target data in the 

projected space, we adopt maximum mean discrepancy (MMD) loss which is defined as:

MMDk
2 = Ep ϕ xs − Eq ϕ xt

ℋk

2
(1)

where ℋk represents the Reproducing Kernel Hilbert Space (RKHS) endowed with a kernel 

function k, and k(xs, xt) = 〈ϕ(xs), ϕ(xs)〉. By minimizing the MMD loss, the source and target 

data distributions in the latent space can get closer.

E. Joint Classification and Reconstruction

In our model, the encoder module plays the role of learning domain-sharing features. To 

this end, the training of the encoder should be driven by tasks with certain supervisions. 

For AD/NC samples, due to their relatively large amount and abundant label information, a 

classification module is trained with these labeled source data with the cross-entropy loss as:
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ℒcls = ∑i = 1

N − yiln y i − 1 − yi ln 1 − y i (2)

where yi is the label (0, 1) and y i is the output of the classifier. For target data, i.e., 

SCD samples, since there is no label information provided during training, we use the 

reconstruction loss as supervision. Specifically, a decoder is linked to the output of the 

encoder, trying to reconstruct the original input target MRI. The decoder has a symmetric 

structure to the encoder, with 32, 64, 90 neurons in each layer, respectively. We use ℒ1 norm 

in the reconstruction loss:

ℒrecon = ∑i = 1

N xi
t − xi

t
1 (3)

where xi
t denotes the i-th sample in the target domain while xi

t is the corresponding 

reconstructed result by the decoder.

The classification and reconstruction modules are trained jointly and they provide 

supervision for the learning process. Through joint training, the encoder is encouraged to 

learn features that are both discriminative to brain disorders and reflect properties of SCD 

data. It should be noted that the total number of target samples (SCD) is much smaller than 

the source data (AD/NC). To facilitate joint training, the SCD samples must be enhanced. 

Here we simply duplicate the SCD samples to make them have an equal number with the 

AD/NC samples. This can make the classification and reconstruction modules updated each 

training epoch. To avoid a bias towards the AD/NC data, the reconstruction loss for SCD 

data can be allocated a relatively higher weight during training. The overall loss ℒ for 

training is calculated as:

ℒ = λ1ℒmmd + λ2ℒcls + ℒrecon (4)

where λ1 and λ2 are the parameters to control the contributions of the three terms in Eq. (4).

F. Implementation

The proposed IADT is implemented by the PyTorch software package. The Adam optimizer 

is utilized for training with a learning rate of 0.001. A linear kernel is adopted as the kernel 

function for the MMD loss in Eq. (1). The parameters λ1 and λ2 in Eq. (4) are set to 0.1 and 

0.1, respectively. The model is trained for 60 epochs with a batch size of 128. The overall 

training and test take around 5~10 seconds.

V. Experiment

A. Experimental Setup

In our experiment, we use the ADNI dataset as the source domain, while the CLAS dataset 

is used as the target domain. The model architecture keeps fixed throughout the experiment.

For performance evaluation, we utilize five metrics, i.e., classification accuracy (ACC), 

balanced accuracy (BAC), sensitivity (SEN), specificity (SPE), and area under the 

ROC curve (AUC). Let TP, TN, FP, FN represent true positive, true negative, false 
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positive and false negative, respectively. Then each metric is calculated as follows. 

ACC = TP+TN
TP+TN + FP + FN , SEN = TP

TP+FN , SPE = TN
TN+FP , and BAC = SEN+SPE

2 . Please note 

that a higher value for each metric indicates a better classification performance.

B. Competing Methods

The proposed method is compared with the following seven methods, including one baseline 

method, four statistical learning methods, and two deep learning methods.

(1) Baseline.—This method uses logistic regression, one of the most popular 

classification models in neuroimaging analysis [32]–[34] for structural MRI-based SCD 

progression prediction. It is trained on the AD/NC samples from ADNI, and then applied to 

CLAS for pSCD/sSCD classification.

(2) Transfer component analysis (TCA) [35].—In TCA, source and target data 

are projected to the subspace spanned by several transfer components. These transfer 

components are learned in the reproducing kernel Hilbert space using maximum mean 

discrepancy (MMD). After that, a logistic classifier trained with source data (AD/NC) is 

used to facilitate pSCD/sSCD classification in the projected feature space. We use a linear 

kernel for feature learning. The subspace dimension of TCA is set to 40, with λ = 0.01 and 

γ = 0.1.

(3) Geodesic flow kernel (GFK) [36].—In this method, a domain specific n-

dimensional subspace is calculated for the source and target data. Then the source and target 

data are projected into an intermediate subspace along the shortest geodesic path connecting 

these two n-dimensional subspaces on the Grassmann manifold. After adaptation, a logistic 

classifier is adopted to conduct pSCD vs. sSCD classification using these projected data. In 

our experiment, we set the subspace dimension in GFK to 20.

(4) Subspace alignment (SA) [37].—In this method, the source data is projected into 

the source subspace and the target data is represented by the target subspace. Both of them 

use their principal components as the subspace representation. Then a transformation matrix 

that maps the source subspace to the target one is learned to mitigate domain shift. After 

adaptation, a logistic classifier is trained to do pSCD vs. sSCD classification using these 

projected data. The subspace dimension in SA is set to 20.

(5) Correlation alignment (CORAL) [38].—In this method, domain shift is reduced 

through alignment of the second-order statistics of source and target domains. After 

adaptation, a logistic classifier is used for pSCD vs. sSCD classification using these aligned 

data. CORAL only calculates the covariance of source and target features without any 

additional parameters.

(6) Normal transfer learning (TL).—In this method, a four-layer multiple-layer 

perception (MLP) with 90, 64, 32, and 2 neurons is used as the network architecture of 

the learning model. The network is firstly pretrained with AD and NC samples, and then 
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fine-tuned with 10% of the pSCD and sSCD samples in the CLAS dataset. The fine-tuned 

network is then applied to the remaining pSCD and sSCD samples for testing.

(7) VoxCNN [39].—VoxCNN is a deep 3D convolutional neural network for structural 

MRI-based brain disorder classification. It is composed of 10 convolution layers for feature 

learning. The size of filter kernel is 3 × 3 × 3, and the number of filters for each layer is 8, 

8, 16, 16, 32, 32, 32, 64, 64, and 64, respectively. Two fully-connected layers are utilized 

for classification. Note that this network takes 3D volumetric data (MRIs) as input. We first 

train the VoxCNN with AD and NC samples from the ADNI dataset, then directly apply it 

for pSCD/sSCD classification on the CLAS dataset.

C. Results of SCD Progression Prediction

We conduct experiments on the ADNI and CLAS datasets for SCD progression prediction, 

i.e., pSCD vs. sSCD classification. Label information of CLAS is not available during our 

model training. The performance of different methods is listed in Table II. From Table II, we 

have the following observations.

First, in terms of ACC and BAC, the baseline has an inferior performance to the 

other competing methods. This indicates that domain shifts among different domains can 

significantly affect a machine learning model. Meanwhile, the adaptation-based methods 

can achieve better results than the baseline, which implies the effectiveness of domain 

adaptation. Second, the IADT outperforms the other methods by a large margin. This can be 

attributed to two reasons. 1) Most competing methods conduct adaptation through alignment 

of the source and target in an unsupervised way, i.e., the label information of the source data 

is not utilized in the adaptation process. We argue that incorporating the label information of 

source domain enables the model to be more discriminative. 2) The attention mechanism in 

our model can select more important features for classification which is helpful for training.

To further evaluate the generalization ability of the proposed method, we apply the well-

trained model to unseen SMC samples from ADNI, without any model retraining. T1-

weighted MRIs of 21 progressive SMC (pSMC) and 90 stable SMC (sSMC) samples from 

ADNI are used. All these MRIs are pre-processed in the same way as those from CLAS. We 

conduct pSMC vs. sSMC classification using our model and compare its performance with 

the baseline (i.e., logistic classifier) and report the results in Fig. 4. As can be seen from this 

figure, the proposed method has good generalization ability on independent ADNI data.

D. Comparison with State-of-the-Art Methods

Our method is further compared with several state-of-the-arts for structural MRI-based 

pSCD vs. sSCD classification. These methods include: 1) Cost-Sensitive SVM (CSVM) [8], 

2) Random Forest [9] and 3) Generative Adversarial Network [40]. We reproduce these 

methods and test them on the same dataset. As for the CSVM, it is implemented through an 

SVM with a linear kernel and is trained with a cost matrix 
0 10
1 0 . The RF is built through 

an ensemble of decision tree models. The GAN is composed of a generator network with 
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3 convolution layers, 3 residual blocks, and 2 deconvolution layers, and a discriminator 

network with 5 convolution layers.

The prediction results are reported in Table III. From Table III, our method achieves better 

or comparable performance than the state-of-the-art methods. More specifically, our model 

achieves higher accuracy, balanced accuracy (i.e., 71.05%, 69.87%) and specificity (i.e., 

73.08%) which are much better than the other three state-of-the-art methods, even though 

GAN is a complex deep-learning method. Note that the GAN model utilizes both MRI and 

PET data with much more training data (both original and synthetic images) than ours. Thus 

it achieves a higher SEN and AUC value. Despite this, our model still achieves comparable 

performance. Considering that the proposed model only takes 5~10 seconds on CPUs to 

train while the GAN typically takes several days, our model has made a good balance 

between accuracy and efficiency.

E. Results on MCI Conversion Prediction

We evaluate the proposed model in the task of MCI to AD conversion prediction, i.e., pMCI 

vs. sMCI classification. A total of 393 MCI subjects (167 pMCI, 226 sMCI) with structural 

MRIs are used as the unlabeled target domain, while AD and NC samples are adopted as the 

labeled source domain. The pMCI subjects have converted to AD within 36 months while 

sMCI have not. We still extract ROI features to represent each subject. The VoxCNN directly 

takes MRIs as the input for end-to-end training. It is firstly pretrained with AD and NC 

samples and then applied for MCI conversion prediction. The results of different methods 

for MCI conversion prediction are reported in Table IV. From the results, we have the 

following observations. 1) Our method achieves better or comparable results than the other 

methods. This verifies the effectiveness of our method for early identification of Alzheimer’s 

disease. 2) The VoxCNN achieves a good result. This is consistent with related studies [13], 

[14], implying a deep CNN directly trained with MR images is able to perform well on 

MCI tasks. Despite that, the proposed model still achieves better results and makes a balance 

between effectiveness and efficiency.

VI. Discussion

A. Data Distribution Visualization

We extract MRI features of source data (AD&NC samples from ADNI) and target data 

(SCD samples from CLAS) learned by the encoder. The source and target data (represented 

by ROI-based MRI features) distribution before and after domain adaptation is visualized 

using t-SNE [41], as shown in Fig. 5. From Fig. 5, the two domains have significant 

distribution differences in the original space. After adaptation, the proposed encoder is able 

to learn some shared features that can decrease the domain shift between two datasets.

B. Discriminative Brain Regions

It is helpful to identify the brain regions that are more closely linked to SCD progression. 

Thus we explore the top ten brain ROIs automatically identified by the attention module 

of our model. We first aggregate the progressive SCD instances that have been correctly 

identified by our model. Then they are fed into the network and get their attention vectors 
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which are computed by the attention module. Each element in the attention vector reflects 

the corresponding feature’s importance. The mean value of the attention vectors is used to 

indicate the brain region contribution (for visualization, we also minus the minimum value 

of the vector for each element). The discriminative ROIs selected by our model for pSCD 

identification on CLAS and pMCI vs. sMCI classification on ADNI are shown in Fig. 6 and 

Fig. 7, respectively. We list the top ten ROIs for pSCD identification (first two columns) 

and pMCI vs. sMCI classification (last two columns) in Table V. We also visualize five 

discriminative brain regions (based on AAL) located by our method for pSCD identification 

on CLAS and MCI-to-AD conversion prediction on ADNI in Fig. 8.

From Table V, it can be observed that the most informative brain regions include the 

precuneus, hippocampus and certain gyrus areas. Especially, the precuneus is a brain region 

involved in a variety of cognitive functions, which include episodic memory retrieval, mental 

imagery strategies, and consciousness [42]–[44]. It is recently reported as a critical brain 

area for the memory and cognition impairment observed in early stage of AD [45]–[47]. 

Also, the hippocampus is a complex brain structure which lies in the temporal lobe. It plays 

a major role in memory and learning [48]–[50]. Studies have revealed that it can be affected 

in a variety of neurological disorders such as AD [51]–[53]. We also find an interesting 

phenomenon from our results that progressive SCD is more closely linked with the left brain 

areas rather than the right part. This has also been found by some related studies [8].

C. Ablation Study

To investigate the classification performance with other MRI features, we further use CNN 

features as the input of the proposed IADT model, and test its performance for pSCD vs. 

sSCD classification. Specifically, we use a 3D CNN which is pretrained with brain MRIs 

from other data sources as the feature extractor. Then the 3D CNN extracts features of 

the source data (AD/NC samples) and target data (SCD samples), respectively. The learned 

features are then fed into our model for adaptation and classification. In practice, we adopt 

a widely-used 3D VGG-Net CNN for brain MRI classification network, i.e., VoxCNN [39]. 

It is pretrained with 205 AD and 231 NC samples acquired from other independent subjects 

in ADNI. The network involves 10 convolution layers, and the embeddings from the last 

activation of the convolution layer are used as the CNN feature. The dimension of CNN 

feature is 256. We also apply VoxCNN to pSCD vs. sSCD classification, and compare the 

result with our method, as shown in Fig. 9a. It can be observed that the proposed model 

outperforms CNN in most cases. The CNN model has a trend of overfitting to the negative 

samples (sSCD) whereas our model is able to achieve a much more balanced accuracy. We 

also compare our method with ROI features and CNN features, as shown in Fig. 9b. From 

the results, the model with CNN features achieves higher AUC values while ROI features 

enable the model to achieve higher classification accuracy. Overall, their performances are 

comparable without dominant advantages over each other in SCD progression prediction.

D. Parameter Analysis

1) Influence of Dimension of Latent Space: The encoder in our model plays the 

role of projecting source and target data into a shared latent space. Since this space is a 

compressed representation of the original features, the dimension of latent space is tunable. 
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We explore the influence of this dimension and calculate the AUC values under different 

dimensions. The result is reported in Fig. 10. It can be observed that the model can achieve 

relatively good classification performance when the dimension of latent space is between 

10~40. This implies that low-dimension spaces can be explored for cross-domain adaptation 

in the task of SCD progression prediction.

2) Influence of Losses: There are three losses for our model training as shown in 

Eq. 4. Since the target data (SCD) number is tiny, the reconstruction loss ℒrecon plays 

an important role in reflecting the target data information. Thus we fix this parameter to 

1 in Eq. 4 for the reconstruction loss, and vary the values of λ1 and λ2 to explore their 

influences. Specifically, we independently change the values of λ1 and λ2 from 0.001, 0.01, 

0.02, 0.05, 0.1, 0.2, 0.5, 1, and compute the corresponding AUC values for the pSCD vs. 

sSCD classification task. The result is reported in Fig. 11.

From Fig. 11, we can see that when the λ2 is relatively small (≤0.02), the overall 

classification performance in terms of AUC is not good. This indicates the importance 

of the classification module in our model. When its contribution is reduced, the model 

will lose discrimination toward brain disorders. In addition, in most cases, the classification 

performance with respect to λ1 and λ2 is stable, which demonstrates that our model is not 

very sensitive to parameters.

VII. CONCLUSION

In this paper, we propose an interpretable autoencoder model with domain transfer (IADT) 

for SCD progression prediction. Our model takes brain ROI features as the input. An 

attention module helps automatically find the most discriminative brain disorder-related 

regions. The domain adaptation and the joint training of the classification and reconstruction 

modules help the model learn domain-invariant features. Our model has three advantages: 

1) good performance on small-sample-sized datasets which has extensive applications in 

medical imaging; 2) good interpretability which can help analyze disease-related brain areas 

with different brain atlases; and 3) simple architecture and fast training/running speed. 

It only takes 5~10 seconds on CPUs to train and test the model. In the future, we will 

incorporate multi-modality features into our framework for further analysis.
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Fig. 1: 
Progression of AD pathology [2] (top) and the differences between our method from 

conventional methods (bottom). MCI: mild cognitive impairment; SCD: subjective cognitive 

decline; pSCD: progressive SCD; sSCD: stable SCD.
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Fig. 2: 
Illustration of the main framework of the proposed IADT model for MRI-based SCD 

progression prediction.
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Fig. 3: 
Illustration of the attention module of the proposed IADT model for SCD progression 

prediction.
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Fig. 4: 
Results of pSMC vs. sSMC classification on ADNI.
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Fig. 5: 
Data distribution of the source (AD&NC samples from ADNI) and target data (SCD 

samples from CLAS) before and after the domain adaptation processing.
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Fig. 6: 
Discriminative power (weights) of different ROIs outputted by the attention module of our 

model for progressive SCD identification.
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Fig. 7: 
Discriminative power (weights) of different Brain ROIs outputted by the attention module of 

our model for MCI-to-AD conversion prediction (i.e., pMCI vs. sMCI classification).
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Fig. 8: 
Important brain regions identified by the proposed IADT in progressive SCD identification 

on CLAS (top) and MCI-to-AD conversion prediction on ADNI (bottom).
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Fig. 9: 
Ablation study of our method with CNN features.
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Fig. 10: 
Influence of dimension of the latent feature space on pSCD vs. sSCD classification.
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Fig. 11: 
Influence of the parameter of λ1 (y-axis) and λ2 (x-axis) on pSCD vs. sSCD classification in 

terms of AUC values.
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TABLE I:

Demographic information of the subjects for SCD progression prediction. The values are denoted in the form 

of “mean±standard deviation”. F/M: Female/Male.

Dataset Category Gender (F/M) Age MMSE

ADNI
AD 67/92 74.4±8.1 23.1±2.2

NC 105/95 73.4±6.2 29.0±1.3

pSMC 9/12 73.9±5.9 27.8±2.0

sSMC 55/35 71.9±5.4 28.5±1.9

CLAS
pSCD 13/11 71.3±6.6 26.8±2.6

sSCD 27/25 68.6±7.2 27.7±2.2
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TABLE II:

Performance (%) of eight methods for SCD progression prediction (i.e., pSCD vs. sSCD classification), and p-

values via paired sample t-test between our method and each of the competing methods.

Method ACC BAC AUC SEN SPE p < 0.05

Baseline 57.89 54.65 58.17 45.83 63.46 Yes

TCA 60.53 59.94 55.85 58.33 61.54 Yes

GFK 59.21 57.85 58.81 54.17 61.54 Yes

SA 61.84 59.78 60.26 54.17 65.38 Yes

CORAL 59.21 60.10 56.01 62.50 57.69 Yes

TL 64.47 59.46 60.50 45.83 73.08 Yes

VoxCNN 67.11 54.65 55.45 20.83 88.46 Yes

IADT (Ours) 71.05 69.87 64.90 66.67 73.08 –
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TABLE IV:

Performance (%) of seven methods for MCI-to-AD conversion prediction (i.e., pMCI vs. sMCI classification).

Method ACC BAC AUC SEN SPE p < 0.05

Baseline 64.12 64.04 69.20 63.47 64.60 Yes

TCA 60.56 60.71 62.24 61.68 59.73 Yes

GFK 65.14 64.92 70.08 63.47 66.37 Yes

SA 65.14 64.92 70.09 63.47 66.37 Yes

CORAL 64.38 64.26 69.84 63.47 65.04 Yes

VoxCNN 70.51 69.89 74.74 80.61 59.18 Yes

IADT (Ours) 73.54 73.00 75.70 69.46 76.55 –
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TABLE V:

Ten discriminative brain ROIs selected by the attention module of our model for progressive SCD 

identification (i.e., pSCD vs. sSCD classification) on CLAS and MCI-to-AD conversion prediction (i.e., pMCI 

vs. sMCI classification) on ADNI.

pSCD vs. sSCD pMCI vs. sMCI

Index ROI Name Index ROI Name

67 Precuneus left 32 Anterior cingulate

86 Middle temporal gyrus right 35 Posterior cingulate gyrus left

55 Fusiform gyrus left 8 Middle frontal gyrus right

37 Hippocampus left 90 Inferior temporal gyrus right

57 Postcentral gyrus left 6 Superior frontal gyrus

44 Calcarine fissure right 37 Hippocampus left

72 Caudate nucleus right 76 Lenticular nucleus

64 Supramarginal gyrus right 21 Olfactory cortex left

83 Temporal pole left 49 Superior occipital gyrus left

61 Inferior parietal left 66 Angular gyrus right
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